Clasa a V 
[image: image1.wmf]-

 a
PROBLEMA 1. Să se afle suma numerelor naturale 
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abcde

 pentru care, în fiecare dintre perechile de mai jos, diferenţa posibilă între numere este cea mai mică:
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(De exemplu, pentru perechea 
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 diferenţa posibilă este 
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 iar în perechea 
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 diferenţa posibilă este 
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PROBLEMA 2. Cu cifrele 
[image: image8.wmf]1,2,3

 şi 
[image: image9.wmf]4

 se formează două numere diferite, având fiecare patru cifre distincte. Arătaţi că niciunul dintre aceste numere nu se divide cu celălalt.

PROBLEMA 3. 
a) Scrieţi numărul 
[image: image10.wmf]252525

 ca sumă de 
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 pătrate perfecte distincte nenule.
b) Demonstraţi că există cel puţin 
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 de numere de forma 
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 care se pot scrie ca sumă de 
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 pătrate perfecte distincte nenule.

PROBLEMA 4. Pe o tablă sunt scrise trei numere naturale nenule distincte.

 Andra împarte cele trei numere de pe tablă la 
[image: image15.wmf]6

 şi obţine resturi egale cu 
[image: image16.wmf]1

 sau cu 3;

 Carla adună două câte două numere de pe tablă şi împarte de fiecare dată rezultatul la 
[image: image17.wmf]6

 , obţinând resturi egale cu 
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 sau cu 
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 , cel puţin câte un rest din fiecare;

 Matei adună cele trei numere de pe tablă şi împarte suma la 
[image: image20.wmf]6

 .

a) Ce rest a obţinut Matei?

b) Aflaţi numerele scrise pe tablă, ştiind că suma celor mai mici două numere de pe tablă este 
[image: image21.wmf]82,

 iar suma celor mai mari două numere de pe tablă este 
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Clasa a VI 
[image: image23.wmf]-

 a
PROBLEMA 1. Fie 
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. În jurul punctului 
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 se construiesc unghiurile 
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, astfel încât 
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 iar 
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. Să se arate că:
a) 
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 este unghi obtuz;
b) bisectoarele unghiurilor 
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 şi 
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 sunt perpendiculare;
c) 
[image: image40.wmf]5

OA

 şi 
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 sunt semidrepte opuse.

PROBLEMA 2. Fie 
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 şi 
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 două numere naturale nenule, pentru care 
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a) Să se demonstreze că 
[image: image45.wmf]5|
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 şi 
[image: image46.wmf]7|;
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b) Să se determine cea mai mare valoare posibilă a raportului 
[image: image47.wmf].
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PROBLEMA 3. Profesorul de matematică scrie pe tablă cifrele: 
[image: image48.wmf]1,1,1,8,8,8

 . Alexandra iese la tablă şi scrie toate numerele de 
[image: image49.wmf]6

 cifre, aşa încât în fiecare număr să apară toate cifrele scrise de profesor pe tablă.

a) Să se arate că suma numerelor scrise de Alexandra este divizibilă cu 
[image: image50.wmf]63;

 

b) Aflaţi cel mai mare divizor comun al numerelor scrise de Alexandra pe tablă.

PROBLEMA 4. Tatăl lui Andrei are într-o urnă 
[image: image51.wmf]36

 de bile, numerotate de la 
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 la 
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 şi extrage la întâmplare 
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 dintre ele. Andrei are la dispoziţie 
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 cartonaşe şi trebuie să scrie pe fiecare câte 
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 numere dintre numerele naturale de la 
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 la 
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 . Un cartonaş se numeşte câştigător dacă nu conţine nici unul dintre cele 
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 numere extrase de tatăl său. Pentru a ieşi la joacă, Andrei trebuie să aibă cel puţin un cartonaş câştigător. Poate găsi Andrei o strategie să meargă la joacă? Justificaţi răspunsul.
Clasa a VII 
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PROBLEMA 1. 
a) Aflaţi numerele raţionale 
[image: image61.wmf]p

 şi 
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 ştiind că 
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b) Fie numărul real 
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c) Aflaţi cel mai mic număr natural 
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 cu proprietatea că 
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PROBLEMA 2. Să se demonstreze că:

a) Dacă 
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 este un număr natural impar, atunci restul împărţirii numărului 
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 la 
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 este 
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b) Dacă 
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 şi 
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 sunt numere prime, atunci 
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 este un număr iraţional;

c) Există o infinitate de perechi 
[image: image74.wmf](
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 de numere naturale nenule, pentru care 
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 este un număr raţional.

PROBLEMA 3. În pătratul 
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 considerăm 
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 mijlocul laturii 
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 , 
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 mijlocul laturii 
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 , 
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a) Demonstraţi că patrulaterul 
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 este inscriptibil.

b) Dacă 
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 EMBED Equation.DSMT4  [image: image85.wmf]cm

 , calculaţi 
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PROBLEMA 4. Se consideră un pătrat cu lungimea laturii de 
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 , care se împarte în 
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 pătrăţele cu latura de 
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[image: image90.wmf]cm

 . Se colorează cu albastru 
[image: image91.wmf]n

 dintre centrele acestor pătrăţele.

a) Arătaţi că dacă 
[image: image92.wmf]4045
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 , atunci colorarea se poate face astfel încât oricare patru dintre punctele albastre să nu fie vârfurile unui paralelogram.

b) Arătaţi că dacă 
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 , atunci indiferent cum se face colorarea, există patru puncte albastre care să fie vârfurile unui paralelogram.
Clasa a VIII 
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PROBLEMA 1. Aflaţi numerele prime 
[image: image95.wmf]p

 care au proprietatea că 
[image: image96.wmf]2

231

pp

-+

 este pătrat perfect.

PROBLEMA 2. În paralelipipedul dreptunghic 
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, se consideră mijloacele 
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 şi 
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 ale segmentelor 
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a) Să se demonstreze că 
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 ;

b) Să se demonstreze că 
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 ;
c) Să se afle distanţa dintre planele 
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PROBLEMA 3. Să se demonstreze că:

a)  
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 oricare ar fi 
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 şi 
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 două numere reale diferite;
b)  
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PROBLEMA 4. Fie 
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 patru puncte necoplanare, 
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 şi 
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 mijloacele segmentelor 
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a) Arătaţi că triunghiul 
[image: image121.wmf]DEB

 este isoscel.

b) Calculaţi distanţa dintre dreptele 
[image: image122.wmf]AC

 şi 
[image: image123.wmf]BD

;

c) Aflaţi măsura unghiului dintre dreptele 
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 şi 
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.
Clasa a IX 
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PROBLEMA 1. Să se determine 
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 să fie raţional.

PROBLEMA 2. Să se rezolve în 
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 ecuaţia 
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PROBLEMA 3. Să se arate că:

a) Dacă 
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, atunci are loc inegalitatea 
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b) Dacă 
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PROBLEMA 4. Fie triunghiul 
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 cu laturile de lungimi 
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 picioarele bisectoarelor unghiurilor triunghiului.

Să se arate că:

a)  
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Triunghiul 
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 este echilateral, dacă şi numai dacă 
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Clasa a X 
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PROBLEMA 1. 
a) Să se determine valorile lui 
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b) Să se arate că dacă 
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PROBLEMA 2. Să se arate că dacă 
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PROBLEMA 3. Să se determine valorile reale ale lui 
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PROBLEMA 4. Să se determine funcţiile 
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Clasa a XI 
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PROBLEMA 1. Fie matricele 
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PROBLEMA 2. Determinaţi numărul 
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PROBLEMA 3. Să se calculeze:

a) 
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PROBLEMA 4. 
a) Fie matricele 
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b) Fie matricea 
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(i) 
Să se arate că există două şiruri de numere reale 
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(ii) Să se calculeze 
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Clasa a XII 
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PROBLEMA 1. Fie 
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 un grup cu elementul neutru 
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a) Să se determine ordinul lui 
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 în grupul 
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 ;

b) Să se demonstreze că grupul 
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 este abelian.

PROBLEMA 2. Fie 
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a) Să se demonstreze că 
[image: image205.wmf]f

 are un singur punct fix, dacă şi numai dacă funcţia 
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 este bijectivă;

b) Să se demonstreze că dacă 
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PROBLEMA 3. Să se calculeze:

1)  
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PROBLEMA 4. Considerăm şirul 
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